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I. Introduction

Activation of the complement system plays a key role
in normal inflammatory response to injury but may
cause substantial injury when activated inappropri-
ately. The cytolytic properties of serum were first de-
scribed more than a century ago (Bordet, 1896), but
there is still no therapeutic compound available on the
market for complement inhibition. This is about to
change as several companies and academic investigators
are actively engaged in the development of complement
therapeutics (Morgan, 1995a; Pascual and French,
1995). The molecular cloning and biochemical dissection
of the many components of the complement pathway
during the last 2 decades has led to a detailed under-

standing of the mechanisms of complement activation in
inflammation. This, in turn, has allowed for the poten-
tial for drug development based on the genetic engineer-
ing of receptors and other components of the comple-
ment pathway. Coupled with the ability to express
human transgenes in animal organs, these develop-
ments hold promise for the therapeutic management of
complement-mediated injury in certain diseases.

Although complement activation is probably not the
primary etiology of many diseases, the damage to tissues
in certain conditions is clearly complement-mediated.
Indeed, the inappropriate activation of complement is at
the core of a long list of disease pathologies (Morgan,
1994) that affect the immune, renal, cardiovascular,
neurological, as well as other, systems in the body (table
1). Examination of the evidence for the involvement of

a Address for correspondence: Savvas C. Makrides, PRAECIS Phar-
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complement in these conditions is beyond the scope of
this review. References are provided in table 1 for fur-
ther reading, and several excellent reviews have covered
clinical complementology (Ross and Densen, 1984;
Frank, 1987; Morgan, 1990, 1994, 1995b; Morgan et al.,
1997; Homeister and Lucchesi, 1994; Kalli et al., 1994;
Asghar, 1995; Baldwin et al., 1995; Mossakowska and
Smith, 1997). In addition, only a brief overview of the
complement system is provided here as this area has
been covered extensively (Liszewski et al., 1996; Ross,
1986; Rother and Till, 1988; Fearon and Wong, 1983;
Reid, 1986; Müller-Eberhard, 1988; Dalmasso, 1986;
Baldwin et al., 1995; Frank, 1994; Morgan and Meri,
1994). The main objective in this study is to review the
published literature on the use of inhibitors for the ther-
apeutic abrogation of pathological complement activa-
tion. A section is also included on the use of bispecific
antibodies in human disease. This latter approach does
not attempt to inhibit complement, but rather uses com-
ponents of the complement system to facilitate the clear-
ance of blood-borne pathogens from the circulation.

II. The Complement System and Its Regulation

The complement system consists of more than 30 se-
rum and cellular proteins, including positive and nega-
tive regulators, linked in two biochemical cascades, the
classical and alternative pathways (fig. 1). The activa-
tion of complement encompasses a series of initiation,

amplification, and lytic steps and their discrete reac-
tions (Parker, 1992; Liszewski et al., 1996). The system
is regulated at multiple levels temporally as well as
spatially. This regulation facilitates recognition of self
from foreign tissue (Farries and Atkinson, 1987) and,
therefore, allows for control over the potent tissue-dam-
aging capabilities of complement activation. It has been
recognized that some of the endogenous complement
regulatory proteins might serve as potential therapeutic
agents in blocking inappropriate activation of comple-
ment in human disease. Soluble and membrane-bound
variants of complement regulators have been produced
and shown to be effective in blocking complement acti-
vation in vitro as well as in animal models of comple-
ment-mediated pathologies (Homeister and Lucchesi,
1994).

A. The Classical Pathway

The classical pathway is usually initiated when a com-
plex of antigen and IgM or IgG antibody binds to the
first component of complement C1. Activation of this
step of complement is regulated by the C1 inhibitor that
binds to C1r and C1s and dissociates them from C1q
(Liszewski et al., 1996). Activated C1 cleaves both C4
and C2 to generate C4a and C4b, as well as C2a and
C2b. The C4b and C2a fragments combine to form the
C3 convertase, which, in turn, cleaves the third compo-
nent of complement, C3, to form C3a and C3b. The

TABLE 1
Disorders associated with complement activation

Disorder References

Acute
Adult respiratory distress syndrome Zilow et al., 1992; Rinaldo and Christman 1990; Langlois et al., 1989; Meade et al., 1994
Ischemia-reperfusion injury:

Myocardial infarct Hill and Ward, 1971; Earis et al., 1985; Rubin et al., 1989; Fox, 1990; Entman et al., 1991;
Kilgore et al., 1994; Homeister and Lucchesi, 1994

Skeletal muscle Rubin et al., 1989; Weiser et al., 1996
Lung inflammation Ward, 1996, 1997; Eppinger et al., 1997

Hyperacute rejection (transplantation) Bach et al., 1995; Baldwin et al., 1995; Sanfilippo, 1996; White, 1996; Lawson and Platt, 1996
Sepsis Hack et al., 1989; Gardinali et al., 1992
Cardiopulmonary bypass Kirklin et al., 1983; Homeister et al., 1992
Burns, wound healing Ward and Till, 1990; Oldham et al., 1988; Davis et al., 1987; Ljunghusen et al., 1996
Asthma Regal et al., 1993; Regal and Fraser, 1996
Restenosis Niculescu et al., 1987
Multiple organ dysfunction syndrome Miller et al., 1996
Trauma, hemorrhagic shock Gallinaro et al., 1992; Kaczorowski et al., 1995
Guillain-Barré syndrome Hartung et al., 1987; Sanders et al., 1986; Koski et al., 1987; Koski, 1990

Chronic
Paroxysmal nocturnal hemoglobinuria Yomtovian et al., 1993; Shichishima, 1995; Rosse, 1997
Glomerulonephritis Couser, 1993; Couser et al., 1985, 1995; Spitzer et al., 1969
Systemic lupus erythematosus Belmont et al., 1986; Hopkins et al., 1988; Negoro et al., 1989; Gatenby, 1991
Rheumatoid arthritis Kemp et al., 1992; Satsuma et al., 1993; Abbink et al., 1992
Infertility D’Cruz et al., 1990, 1991; Anderson et al., 1993
Alzheimer’s disease Johnson et al., 1992; Rogers et al., 1992; Pasinetti, 1996; Eikelenboom et al., 1994; Velazquez et

al., 1997; Jiang et al., 1994; McGeer et al., 1997; Chen et al., 1996; Morgan et al., 1997
Organ rejection (transplantation) Platt, 1996; Baldwin et al., 1995; Marsh and Ryan, 1997; Dalmasso, 1997
Myasthenia gravis Lennon et al., 1978; Piddlesden et al., 1996
Multiple sclerosis Piddlesden et al., 1994

Biomaterials incompatibility
Platelet storage Gyongyossy-Issa et al., 1994
Hemodialysis Cheung et al., 1994; Himmelfarb et al., 1995; Mollnes, 1997
Cardiopulmonary bypass equipment Craddock et al., 1977; Haslam et al., 1980; Gillinov et al., 1993; Mollnes, 1997; te Velthuis et al.,

1996
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binding of C3b to the C3 convertase yields the C5 con-
vertase, which cleaves C5 into C5a and C5b, the latter
becoming part of the membrane attack complex (MAC)b.
It must be noted that activators other than antibodies
are capable of initiating the classical pathway. For ex-
ample, in the absence of antibody, b-amyloid activates
complement in the brain by binding to the collagen-like
domain of the C1q A chain (Rogers et al., 1992; Jiang et

al., 1994; Velazquez et al., 1997; Webster et al., 1997;
Cadman and Puttfarcken, 1997). These observations
have therapeutic implications for Alzheimer’s disease
(Barnum, 1995; Pasinetti, 1996; Chen et al., 1996).

The three peptides released during these steps, C3a,
C4a, and C5a, are known as anaphylatoxins (Hugli and
Müller-Eberhard, 1978), and they differ in their relative
potencies. C5a is the most potent anaphylatoxin, fol-
lowed by C3a, which, in turn, is 10- to 100-fold more
active than C4a (Cui et al., 1994; Hugli and Müller-
Eberhard, 1978; Liszewski et al., 1996). The anaphyla-
toxins mediate multiple reactions in the acute inflam-
matory response, including smooth muscle contraction,
changes in vascular permeability, histamine release
from mast cells, neutrophil chemotaxis, platelet activa-
tion and aggregation (Morgan, 1986; Hugli, 1989; Ger-
ard and Gerard, 1994), as well as up-regulation of adhe-
sion molecules that can also play key roles in neutrophil
recruitment (Foreman et al., 1994; Mulligan et al., 1996,
1997; Schmid et al., 1997a). Recently, C3a and C5a have
been shown to be potent chemotactic factors for human

b Abbreviations: AHB, antisense homology boxes; C1qR, C1q recep-
tor; C3aR, C3a receptor; C5aR, C5a receptor; CAB-2, complement acti-
vation blocker-2; cDNA, complementary deoxyribonucleic acid; CR2,
complement receptor type 2; CVF, cobra venom factor; DAF-CD59,
decay accelerating factor-CD59; GPI, glycosyl phosphatidyl inositol;
HAR, hyperacute rejection; HEL, hen egg lysozyme; IC, immune com-
plexes; Ig, immunoglobulins; LHR, long homologous repeat; mAb,
monoclonal antibody; MAC, membrane attack complex; MCP-DAF,
membrane cofactor protein-decay accelerating factor; P, properdin;
RCA, regulators of complement activation; scFv, single chain Fv; SCR,
short consensus repeat; sCR1, soluble complement receptor type 1;
sCR1[desLHR-A], soluble complement receptor type 1 lacking long ho-
mologous repeat-A; sCR1-SLex, soluble complement receptor type 1-sia-
lyl Lewisx; sDAF, soluble decay accelerating factor; sMCP, soluble
membrane cofactor protein.

FIG. 1. The complement system and its regulators. The classical pathway is activated by complexes of antigen and IgM or IgG antibody classes.
The alternative pathway is activated by microbial surfaces and complex polysaccharides, e.g., yeast cell walls, endotoxins, viral particles. In both the
classical and alternative pathways C3 is converted into C3b by the C3 convertases, whereas in the classical pathway C5 is converted into C5b by the
C5 convertases. The three anaphylatoxins, C3a, C4a and C5a are released during the various enzymatic reactions of the cascade. The membrane
attack complex is formed by the sequential binding of C5b to C6, C7, C8 and C9. Both pathways are subject to fine regulation by soluble (C1 inhibitor,
C4bp, factor H, vitronectin, clusterin) as well as membrane-bound (CR1, DAF, MCP, CD59) proteins. The anaphylatoxins are inactivated by
carboxypeptidase N.

THERAPEUTIC INHIBITION OF THE COMPLEMENT SYSTEM 61

 by guest on June 15, 2012
pharm

rev.aspetjournals.org
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org/


mast cells (Hartmann et al., 1997). The anaphylatoxins
are rapidly inactivated by carboxypeptidase N, which
cleaves the carboxyl terminal arginyl residue from each
anaphylatoxin, thus converting them into their des-Arg
forms (Bokisch et al., 1969; Bokisch and Müller-Eber-
hard, 1970; Chenoweth, 1986). A C5a-inactivating en-
zyme isolated from human peritoneal fluid has been
described (Ayesh et al., 1995).

The C3 and C5 convertases of the classical pathway
(fig. 1) are controlled by members of the Regulators of
Complement Activation (RCA) family (Rey-Campos et
al., 1987; Carroll et al., 1988; Campbell et al., 1988;

Hourcade et al., 1989; Morgan and Meri, 1994) (fig. 2;
table 2). This protein family includes the membrane-
bound regulators complement receptor type 1 (CR1; C3b/
C4b receptor; CD35), complement receptor type 2 (CR2;
CD21; Epstein-Barr virus receptor), membrane cofactor
protein (MCP; CD46; measles virus receptor), decay-
accelerating factor (DAF; CD55), and the serum proteins
factor H and C4b-binding protein (C4bp).

B. The Alternative Pathway

This arm of the complement system is triggered by
microbial surfaces and a variety of complex polysaccha-

FIG. 2. Schematic representation of the structure of the six members of the RCA family and CD59. Only the common isoforms are shown here. SCRs
in each protein are represented by square blocks, and transmembrane regions are shown in solid black. In CR1, groups of seven SCRs are further
subdivided into four LHRs (Ahearn and Fearon, 1989). The number of N-linked glycosylation sites is shown based on the cDNA sequence of CR1
(Klickstein et al., 1988), CR2 (Moore et al., 1987; Weis et al., 1988), MCP (Liszewski et al., 1991), DAF (Caras et al., 1987; Medof et al., 1987), CD59
(Sugita et al., 1989; Davies et al., 1989), factor H (Ripoche et al., 1988), C4bp a-chain (Chung et al., 1985) and C4bp b-chain (Hillarp and Dahlbäck,
1990). The ligand-binding active sites are stippled in the appropriate SCRs for CR1 (Klickstein et al., 1988; Kalli et al., 1991; Makrides et al., 1992),
CR2 (Fearon and Carter, 1995), MCP (Adams et al., 1991), DAF (Coyne et al., 1992; Kuttner-Kondo et al., 1996), factor H (Gordon et al., 1995; Sharma
and Pangburn, 1996) and C4bp (Ogata et al., 1993; Härdig et al., 1997). In factor H, only the first C3b-binding site (SCR 1–4) exhibits factor I cofactor
activity (Sharma and Pangburn, 1996). Factor H also contains two heparin-binding sites, one near SCR 13 and another in SCR 6–10 (Sharma and
Pangburn, 1996) or SCR 7 (Blackmore et al., 1996). The amino acid residues in the active site of CD59 have been identified (Zhou et al., 1996; Yu et
al., 1997). CY, cytoplasmic domain; GPI, glycosyl phosphatidyl inositol membrane anchor (E, ethanolamine; G, glycan; PI, phosphatidyl inositol); LHR,
long homologous repeat; SCR, short consensus repeat; ST, serine/threonine-enriched domain capable of extensive O-linked glycosylation; TM,
transmembrane region.
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rides. C3b, formed by the spontaneous low-level cleav-
age of C3, can bind to nucleophilic targets on cell sur-
faces and form a complex with factor B that is
subsequently cleaved by factor D (fig. 1). The resulting
C3 convertase is stabilized by the binding of properdin
(P) that increases the half-life of this convertase (Fearon
and Austen, 1975). Cleavage of C3 and binding of an
additional C3b to the C3 convertase give rise to the C5
convertase of the alternative pathway (fig. 1). Subse-
quent reactions are common to both pathways and lead
to the formation of the MAC. The C3 and C5 convertases
of the alternative pathway are controlled by CR1, DAF,
MCP, and by factor H. These regulators differ in their
mode of action, i.e., their decay-accelerating activity
(ability to dissociate convertases) and ability to serve as
required cofactors in the degradation of C3b or C4b by

factor I (tables 2 and 3). In addition, CR2 may have a
minor role in regulating complement activation (Fearon
and Carter, 1995).

C. The Membrane Attack Complex

The C5 convertases in both the classical and alterna-
tive pathways cleave C5 to produce C5a and C5b. There-
after, C5b sequentially binds to C6, C7, and C8 to form
C5b-8 that catalyzes the polymerization of C9 to form
the MAC (Tschopp et al., 1982). This structure inserts
into target membranes and causes cell lysis (Hu et al.,
1981; Podack et al., 1982). However, deposition of small
amounts of the MAC on cell membranes of nucleated
cells may mediate a range of cellular processes without
causing cell death (Morgan, 1992; Nicholson-Weller and
Halperin, 1993; Benzaquen et al., 1994).

TABLE 2
Regulatory proteins of the complement pathway

Protein Location Ligand Function/activity References

C1-inhibitor Plasma C1r, C1s Dissociates C1; regulates the contact (kinin-
forming pathway); a serpin (Serine
Protease Inhibitor)

Davis, 1988; Davis et al., 1993

Factor I Plasma C4b, C3b Cleaves and inactivates C4b and C3b using
CR1, MCP, C4bp, or factor H as cofactors

Goldberger et al., 1987; Catterall et al.,
1987; Vyse et al., 1996

Factor H Plasma C3b Accelerates decay of C3 convertases in
alternative pathway; dissociates B and
Bb from C3b; cofactor for cleavage of C3b
by factor I

Whaley and Ruddy, 1976; Weiler et al.,
1976; Ripoche et al., 1988

C4bp Plasma C4b (C3b) Accelerates decay of C3 convertases in
classical pathway; dissociates C2 and C2a
from C4b; cofactor for C4b cleavage by
factor I

Chung et al., 1985; Gigli et al., 1979

CR1 (CD35) Membrane C4b, C3b, iC3b Accelerates decay of C3 and C5 convertases
in classical and alternative pathways;
dissociates C2 and C2a from C4b;
dissociates B and Bb from C3b; cofactor
for cleavage of C4b and C3b by factor I

Ahearn and Fearon, 1989; Klickstein et
al., 1988; Krych et al., 1991

CR2 (CD21) Membrane iC3b, C3dg,
C3d

B cell receptor for complexes having bound
C3 fragments; cofactor for cleavage of
iC3b by factor I; Epstein-Barr virus
receptor

Ahearn and Fearon, 1989; Fearon and
Carter, 1995

MCP (CD46) Membrane C3b (C4b) Blocks formation of C3 convertases in
classical and alternative pathways;
cofactor for cleavage of C3b and C4b by
factor I; receptor for measles virus and
Streptococcus pyogenes

Seya et al., 1986; Cho et al., 1991;
Naniche et al., 1993; Dorig et al.,
1993; Okada et al., 1995

DAF (CD55) Membrane C4b, C3bA Accelerates decay of C3 convertases in
classical and alternative pathways;
dissociates C2 and C2a from C4b;
dissociates B and Bb from C3b

Fujita et al., 1987; Nicholson-Weller et
al., 1982; Nicholson-Weller and
Wang, 1994; Kuttner-Kondo et al.,
1996

CD59 Membrane C7, C8 Blocks formation of MAC on host cells Davies et al., 1989; Sugita et al., 1993;
Rollins et al., 1991

Vitronectin (S-protein) Plasma C5b-7 Blocks formation of fluid-phase MAC Podack and Müller-Eberhard, 1979;
Jenne and Stanley, 1985; Suzuki et
al., 1985; Hayman et al., 1983;
Tschopp et al., 1988; Johnson et al.,
1994; Preissner, 1991; Sheehan et
al., 1995

Clusterin (SP-40,40) Plasma C5b-9 Blocks formation of fluid-phase MAC Kirszbaum et al., 1989; Tschopp et al.,
1993; Rosenberg and Silkensen,
1995; McDonald and Nelsestuen,
1997

Anaphylatoxin inhibitor Plasma C5a, C4a, C3a Cleaves terminal arginine residue and
inactivates anaphylatoxins;
carboxypeptidase N

Chenoweth, 1986

Properdin Plasma C3bBb Binds to and stabilizes C3 convertase in
alternative pathway

Farries et al., 1988; Fearon and
Austen, 1975

Nephritic factors Plasma C3bBb,
C4bC2a

Bind to and stabilize the C3 convertases in
classical and alternative pathways
resulting in chronic C3 cleavage

Spitzer et al., 1969; Daha et al., 1977;
Hiramatsu and Tsokos, 1988

THERAPEUTIC INHIBITION OF THE COMPLEMENT SYSTEM 63

 by guest on June 15, 2012
pharm

rev.aspetjournals.org
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org/


Three different molecules are known to be involved in
the control of the MAC formation. Vitronectin controls
fluid-phase MAC by binding to the C5b-7 complex, pre-
venting its insertion into membranes (Podack et al.,
1977). Similarly, clusterin (SP-40,40; cytolysis inhibitor;
sulfated glycoprotein 2; apolipoprotein J) (Liszewski et
al., 1996) blocks fluid-phase MAC by binding to the
C5b-7 complex (Jenne and Tschopp, 1989; Choi et al.,
1989; Murphy et al., 1989). CD59 blocks MAC formation
by binding to C8 and C9, and inhibiting the incorpora-
tion and subsequent polymerization of C9 (Rollins et al.,
1991). An additional protein, homologous restriction fac-
tor (Zalman, 1992), may be involved in MAC regulation,
but it has been suggested that the functional activity
reported for homologous restriction factor might possi-
bly be due to a contamination by CD59 aggregates dur-
ing purification (Liszewski et al., 1996).

III. Modified Native Complement Components
That Block Complement Activation

A. Soluble Complement Receptor Type 1

The primary structure of the human CR1 (CD35) has
been derived from its complementary deoxyribonucleic
acid (cDNA) sequence (Klickstein et al., 1987, 1988;
Hourcade et al., 1988). The mature protein of the most
common allotype of CR1 contains 1998 amino acid resi-
dues: an extracellular domain of 1930 residues, a trans-
membrane region of 25 residues, and a cytoplasmic do-
main of 43 residues. The entire extracellular domain is
composed of 30 repeating units (fig. 2) referred to as
short consensus repeats (SCRs) or complement control
protein repeats (CCPRs), each consisting of 60 to 70
amino acid residues. Within each SCR a loop structure is
maintained by disulfide linkages between the conserved
cysteines-1 and -3, and -2 and -4 (Ahearn and Fearon,
1989). The SCR motif, first shown in b2-glycoprotein I
(Lozier et al., 1984), or a variation thereof, is found in
other complement proteins as well as in a large number
of noncomplement proteins (Reid and Day, 1989). In
CR1, groups of seven SCRs have been organized into
four long homologous repeats (LHRs), so that only the
SCRs 29 and 30 are not part of a LHR (fig. 2). CR1 has
25 Asn-X-Ser(Thr) sequence motifs (Klickstein et al.,
1988) that confer potential N-linked glycosylation (Win-
zler, 1973) (fig. 2). The ligand-binding active sites of CR1

(fig. 2) were originally identified by Klickstein et al.
(1988) who demonstrated a C4b-binding site within
LHR-A and C3b-binding sites within both LHR-B and
LHR-C. These observations were subsequently con-
firmed by site-directed mutagenesis studies (Krych et
al., 1991, 1994). Optimal binding affinities equivalent to
those of native CR1 were later demonstrated to reside
within SCRs 8–11 and 15–18 for C3b (Kalli et al., 1991;
Makrides et al., 1992) and in SCRs 1–4 for C4b (Reilly et
al., 1994). CR1 has extrinsic activity (Medof et al., 1982),
i.e., it inactivates convertases assembled on external
membranes, and it also exhibits intrinsic activity (Ki-
noshita et al., 1986; Makrides et al., 1992), i.e., it inac-
tivates convertases formed on the same membrane on
which it is expressed. Among the members of the RCA
family (table 3), CR1 is the only one that possesses
decay-accelerating activity for both C3 and C5 converta-
ses in both the classical and alternative pathways, as
well as factor I cofactor activity for the degradation of
both C3b and C4b (Fearon, 1991). Recent data indicate
that C1q binds specifically to human CR1 (Klickstein et
al., 1997). Thus, CR1 recognizes all three complement
opsonins, namely C3b, C4b, and C1q.

A soluble version of recombinant human CR1 (sCR1)
lacking the transmembrane and cytoplasmic domains
was produced and shown to retain all the known func-
tions of the native CR1 (Weisman et al., 1990a,b). Initial
studies centered on the use of sCR1 in animal models of
ischemia/reperfusion injury. Although thrombolytic
agents have been used effectively in ischemic myocar-
dium to induce reperfusion, blood reflow into ischemic
tissue may induce necrosis because of complement acti-
vation, neutrophil accumulation in the microvascula-
ture, and consequent damage to the endothelium
(Homeister and Lucchesi, 1994). Administration of sCR1
in a rat model of ischemia/reperfusion injury reduced
myocardial infarct size by 44% assessed at 7 days post-
dosage and minimized the accumulation of neutrophils
within the infarcted area, probably because of a de-
creased generation of the anaphylatoxin C5a (Weisman
et al., 1990a,b). In addition, sCR1 attenuated the depo-
sition of the C5b-9 MAC. This was the first demonstra-
tion that a recombinant soluble form of a member of the
RCA family might provide a potential therapeutic agent
in inflammation. The cardioprotective role of sCR1 in
animal models of ischemia/reperfusion injury has been
confirmed (Shandelya et al., 1993; Smith et al., 1993;
Homeister et al., 1993). Similarly, sCR1 reduced tissue
injury in ischemia/reperfusion of mouse skeletal muscle
(Pemberton et al., 1993), rat intestine (Hill et al., 1992),
rat liver (Chávez-Cartaya et al., 1995), and remote or-
gans after lower torso ischemia in the rat (Lindsay et al.,
1992). In addition to its efficacy in models of ischemia/
reperfusion, sCR1 has been shown to reduce comple-
ment-mediated tissue injury in animal models with a
wide range of human acute and chronic inflammatory
diseases. These include dermal vascular reactions (Yeh

TABLE 3
Functions of proteins of the RCA family

Protein

Decay-accelerating
activity

Factor I cofactor
activity

Substrate

Classical Alternative C4b C3b

CR1 1 1 1 1 C3b/C4b
CR2 2 2 2 2a iC3b/C3dg
DAF 1 1 2 2 C3b/C4b
MCP 2 2 1 1 C3b/C4b
C4-bp 1 2 1 2 C4b
Factor H 2 1 2 1 C3b

a CR2 possesses factor I cofactor activity for iC3b.
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et al., 1991; Mulligan et al., 1992b), lung injury (Rabi-
novici et al., 1992; Mulligan et al., 1992a,b), trauma
(Kaczorowski et al., 1995), myasthenia gravis (Piddles-
den et al., 1996), glomerulonephritis (Couser et al.,
1995), multiple sclerosis (Piddlesden et al., 1994), aller-
gic reactions (Lima et al., 1997), and asthma (Regal et
al., 1993). In addition, sCR1 protects against vascular
injury and cellular infiltration in allografts (Pratt et al.,
1996a,b) and attenuates hyperacute rejection in xe-
nografts (Baldwin et al., 1995; Ryan, 1995; Levin et al.,
1996) (see Section VII.).

Pharmacokinetic studies of earlier preparations of
sCR1 showed that the b-phase half-life (t1/2b) was ap-
proximately 1.7 h in rats, and 8 h in humans (J. Levin,
unpublished data). A longer circulating half-life might
permit bolus-dosage administration, allow lower dos-
ages of a drug to achieve comparable therapeutic effects
and reduce the cost per therapeutic dosage. One exper-
imental approach used to extend the circulating half-life
of sCR1 utilized the albumin-binding terminus “BA” or
“BABA” of Streptococcal protein G as a fusion partner
with sCR1 (Makrides et al., 1996). The resulting
sCR1-BA fusion construct exhibited a significantly
longer half-life (297 min) than sCR1 (103 min) in rats
(Makrides et al., 1996). Fearon and colleagues chose the
Ig molecule as a fusion partner with SCRs 8–11, the
C3b-binding site of CR1. The (CR1)2-F(ab9)2 chimera
was as effective as sCR1 in binding to C3b dimers,
promoting cleavage of C3b by factor I and inhibiting
activation of the alternative pathway (Kalli et al., 1991).
A potential application of this finding is the fusion of
CR1 active units to full-length IgG to create chimeras
with a longer half-life than sCR1 because of the long
plasma half-life of the Fc moiety (Capon et al., 1989). An
additional advantage of an Ig fusion partner is the po-
tential for targeting complement inhibition to specific
tissues (Kalli et al., 1994). Thus, a monoclonal antibody
(mAb) specific for antigen localized in the area of com-
plement activation could be used to construct a CR1/Ig
molecule that might act as a local rather than a systemic
complement blocker.

However, none of the above molecular constructions is
likely to be therapeutically useful because of the poten-
tial immunogenicity of the fusion partners. The genetic
engineering or “humanization” of antibodies (Co and
Queen, 1991; Rapley, 1995; Morrison and Shin, 1995)
might minimize immunogenic reactions but not com-
pletely eliminate anti-idiotypic effects. Most important,
the problems associated with the short half-life of sCR1
appear to have been solved. Thus, a subsequent prepa-
ration of sCR1 obtained using modified culture condi-
tions showed a t1/2b of approximately 30 h in humans
(Dellinger et al., 1995, 1996). The reason for the longer
half-life of sCR1 is unknown but may be related to a
potentially altered glycosylation pattern resulting from
the culture conditions.

It has been suggested that the effects of complement
on the endothelium are mediated primarily by the MAC
because the human vascular endothelium is apparently
devoid of receptors for anaphylatoxins (conference dis-
cussion cited in Morgan, 1995a). Although the expres-
sion of the C5a receptor (C5aR) was thought to be lim-
ited to leukocytes, the molecular cloning of the human
C5aR demonstrated its expression on nonmyeloid cells,
including the vascular endothelium (Haviland et al.,
1995; Wetsel, 1995). Similarly, the human C3a receptor
(C3aR) has recently been cloned by three groups (Ames
et al., 1996; Roglic et al., 1996; Crass et al., 1996). The
C3aR, originally thought to be an orphan receptor (Ro-
glic et al., 1996), was shown to be expressed in endothe-
lial cells (Roglic et al., 1996). It is now clear that com-
plement activation products have many diverse effects
on endothelial cells, and, in fact, the endothelium may
be a major target of the complement system (Ward,
1996).

The ability of sCR1 to block activation of both the
classical as well as the alternative pathways has been
thought (Evans et al., 1995) to potentially reduce its
therapeutic value because it inhibits generation of C3b,
a C3 opsonic product that is critical for antibacterial
defenses (Ross and Densen, 1984). The possibility that a
global inhibitor of complement activation might compro-
mise antibacterial defenses was recognized by Becker
(1972) who concluded that “this risk might not be unac-
ceptably high.” To date, there is no credible evidence
that sCR1 compromises bacterial defenses in animal
models of inflammation. More importantly, two phase I
clinical trials of sCR1 in patients with myocardial in-
farct or burn-induced adult respiratory distress syn-
drome revealed no safety issues in this regard, including
rates of bacterial infection (J. Levin, personal communi-
cation). The adult respiratory distress syndrome trial is
of particular relevance in this context because people
who are severely burned may die of bacterial sepsis. In
this environment, sCR1 had no effect on systemic bac-
terial infections (J. Levin, personal communication).

B. Soluble Complement-Receptor Type 1 Lacking Long
Homologous Repeat-A

A mutant version of sCR1 lacking LHR-A
sCR1[desLHR-A] was constructed with the objective of
generating a selective inhibitor of the alternative path-
way (Scesney et al., 1996). The rationale for this is based
on the fact that C4b is a component of the classical
pathway exclusively, whereas C3b functions in both
classical and alternative pathways (fig. 1). Thus, re-
moval of the C4b-binding LHR-A from sCR1 would be
expected to abrogate the ability of sCR1[desLHR-A] to
accelerate the decay of the C3 and C5 convertases in the
classical pathway (fig. 1). Indeed, sCR1[desLHR-A] was
shown to be quantitatively equivalent to sCR1 in its
ability to inhibit the alternative pathway in vitro
(Scesney et al., 1996). On the other hand, sCR1[desLHR-
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A] was less effective than sCR1 in blocking activation of
the classical pathway in vitro. Both sCR1[desLHR-A]
and sCR1 exhibited equal capacities to serve as cofactor
in the degradation of fluid-phase C3b by factor I
(Scesney et al., 1996). These results are consistent with
the observations of Kalli et al. (1991) who constructed a
chimera between SCR 8–11 of CR1 and an antibody
F(ab9)2 fragment, thus allowing the bivalent presenta-
tion of SCR 8–11 (C3b-binding site). In that case, the
chimera (CR1)2-F(ab9)2 and sCR1 were shown to be
equivalent in their capacity to inhibit the alternative
pathway of complement activation, although the chi-
mera, which lacks the C4b-binding site found in LHR-A,
was considerably less effective at inhibiting the classical
pathway (Kalli et al., 1991).

The availability of sCR1[desLHR-A] facilitated exam-
ination of the relative contributions of the classical and
alternative pathways in a model of discordant xeno-
transplantation in which an isolated perfused heart
from a rabbit is exposed to human plasma that serves as
a complement source (Homeister et al., 1992). The inter-
action of rabbit heart tissue with plasma activates com-
plement, leading to the production of anaphylatoxins
and the generation of C5b-9 membrane attack complex.
Both sCR1 and sCR1[desLHR-A] had a cardioprotective
effect in the rabbit heart perfused with human plasma
(Gralinski et al., 1996). Complement activation was also
shown to attenuate endothelium-dependent relaxation
in rabbit tissue (Lennon et al., 1996). This attenuation
was dependent on the formation of C5b-9 via the classi-
cal and alternative pathways, as demonstrated through
the use of human serum depleted in factor B, C2, or C8.
The use of sCR1 and sCR1[desLHR-A] decreased the
loss of endothelium-dependent relaxation in rabbit tho-
racic aortic rings (Lennon et al., 1996). Murohara et al.
(Murohara et al., 1995a) examined the relative contri-
bution of the classical and alternative pathways in a rat
model of ischemia and reperfusion injury using either
C1 esterase inhibitor (see Section III.J), a classical path-
way inhibitor, or sCR1[desLHR-A]. These authors con-
cluded that both the classical and alternative pathways
contribute to reperfusion injury in myocardial ischemia
by a neutrophil-dependent mechanism. Selective inhibi-
tion of the classical pathway appeared to be slightly
more effective in limiting tissue injury than the selective
inhibition of the alternative pathway in this model (Mu-
rohara et al., 1995a).

C. Soluble Complement Receptor Type 1-Sialyl Lewisx

This compound is designed to simultaneously inhibit
both complement activation and neutrophil recruitment
at sites of inflammation (C. Rittershaus, personal com-
munication). The rationale behind the development of
this complement inhibitor is based on the current un-
derstanding of the interaction between complement and
selectins in inflammation (Lefer et al., 1994a; Lefer,
1995; Mulligan et al., 1996) and the demonstration that

C5a up-regulates P-selectin (Foreman et al., 1994; Mul-
ligan et al., 1997). The migration of leukocytes to sites of
inflammation is a complex and highly regulated process
that is orchestrated by chemoattractants and a large
number of adhesion molecules that are involved in cell-
cell and cell-matrix interactions. These adhesion mole-
cules are members of the four families of receptors, the
selectins, the integrins, the Ig superfamily, and the cad-
herins (Zimmerman et al., 1992; Pardi et al., 1992;
Mackay and Imhof, 1993; Albelda et al., 1994; Springer,
1994; Malik and Lo, 1996; Butcher and Picker, 1996).
The selectins, L-, P-, and E-selectins, participate in the
initial “rolling” adhesions, bringing the circulating leu-
kocytes into close proximity with chemoattractants re-
leased from endothelial cells of the vessel wall. Che-
moattractants bind to G protein-coupled receptors on
leukocytes, signaling the activation of integrins that,
together with members of the Ig superfamily effect the
arrest and subsequent migration of leukocytes into the
tissue (Springer, 1994). Although this model of neutro-
phil extravasation suggests that rolling is a necessary
precursor to subsequent adhesive events, experimental
evidence indicates the possibility of simultaneous,
rather than sequential activity of the various adhesion
molecules of the inflammatory cascade (Doerschuk et
al., 1993; Hogg and Doerschuk, 1995; Ward, 1995; Lowe
and Ward, 1997).

Selectin function, unlike that of most other adhesion
molecules, appears to be restricted to interactions be-
tween leukocytes and the vascular endothelium (Tedder
et al., 1995). The selectins bind carbohydrate ligands
containing fucose, including SLex (Neu5Aca2–3Galb1–
4(Fuca1–3)GlcNAc-) (Phillips et al., 1990; Polley et al.,
1991; Foxall et al., 1992; Rosen and Bertozzi, 1994;
Bertozzi, 1995; McEver et al., 1995). Other proteins,
including PSGL-1, CD34, and GlyCAM-1 have been
identified as high-affinity ligands for selectins (Lasky,
1995; Kansas, 1996). There is a diversity of opinions as
to the identities of the physiologically relevant ligands
for selectins (Varki, 1994, 1997; Kansas, 1996). Never-
theless, the observation that SLex can inhibit neutrophil
adhesion mediated by both E- and P-selectins (Phillips
et al., 1990; Lasky, 1992) led to vigorous efforts to de-
velop compounds for the therapeutic disruption of the
selectin-SLex interaction in inflammation. Such antago-
nists include SLex and its analogs (Mulligan et al.,
1993a; Rao et al., 1994; Bertozzi et al., 1995; Flynn et al.,
1996; Lefer et al., 1994b; Buerke et al., 1994; Murohara
et al., 1995c; Maaheimo et al., 1995; Lin et al., 1996; Tojo
et al., 1996; Zhang et al., 1996), antibodies against SLex

(Dinh et al., 1996; Seko et al., 1996) or against P-selectin
(Lefer et al., 1996; Doerschuk et al., 1996), peptides
(Briggs et al., 1995; Geng et al., 1992; Heavner et al.,
1993; Briggs et al., 1996; Martens et al., 1995; Norman
et al., 1996), oligonucleotides (Murohara et al., 1996;
Hicke et al., 1996; O’Connell et al., 1996), fucoidin
(Kubes et al., 1995), inositol polyanions (Cecconi et al.,
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1994), sulfatides (Mulligan et al., 1995), heparin-derived
oligosaccharides (Nelson et al., 1993), sulfated neoglyco-
polymers (Manning et al., 1997), a hydroxamic acid-
based peptide inhibitor of matrix metalloproteases (Wal-
check et al., 1996), and chimeric proteins (Mulligan et
al., 1993b; Fujise et al., 1997). Recently, the 39-sulfated
Lewisa pentasaccharide was demonstrated to prevent
ischemia-reperfusion lung injury in a rat model
(Reignier et al., 1997). The 39-sulfated Lewisa has been
shown to be a more potent ligand for E- and L-selectins
as compared with SLex (Green et al., 1995; Yuen et al.,
1994). The biological effects of many of these compounds
in selectin-dependent animal models of inflammation
have been critically reviewed (Lowe and Ward, 1997).

The protective effects of SLex synthetic analogues
have been demonstrated in several models of inflamma-
tion, including feline (Buerke et al., 1994) and canine
(Lefer et al., 1994b; Flynn et al., 1996) models of myo-
cardial ischemia/reperfusion, as well as in a rat model of
lung injury (Mulligan et al., 1993a). However, the use of
the SLex analogue CY-1503 did not reduce myocardial
infarct or neutrophil accumulation in dogs subjected to
ischemia/reperfusion injury (Gill et al., 1996). These con-
flicting results may in part be explained by the dosing
regimes employed by the different investigators and the
relatively short half-life of the SLex analogue. Of key
importance is the high IC50 (0.5 to 1.0 mM) of the mono-
valent SLex tetrasaccharide in inhibiting E- and P-se-
lectin-dependent adhesion of leukocytes, as determined
in static adhesion assays (Jacob et al., 1995). SLex mul-
tivalency appears to enhance its binding to L-selectin
(Maaheimo et al., 1995). Thus, a synthetic SLex analog
was tested as an inhibitor of L-selectin-mediated lym-
phocyte-endothelium interactions in rejecting rat kidney
transplant. Although the nonfucosylated O-glycosidic
oligosaccharide did not possess any inhibitory activity,
the monovalent SLex molecule prevented the binding
significantly, and the divalent SLex saccharide was the
most potent inhibitor (Maaheimo et al., 1995).

Complement activation and, in particular, generation
of C5a attract and stimulate neutrophils, causing their
sequestration within capillaries. Activated neutrophils
produce toxic oxygen metabolites that damage endothe-
lial cells (Mulligan et al., 1996, 1997). C5a is necessary
for up-regulation of vascular P-selectin after systemic
activation of complement (Foreman et al., 1994; Mulli-
gan et al., 1997; Ward, 1996). To control the damaging
effects of both complement and neutrophil activation
during inflammation, sCR1 was produced in a mamma-
lian cell line capable of SLex glycosylation (Picard et al.,
1996; Sen et al., 1966; Bertino et al., 1996). It was shown
that sCR1 purified from conditioned media possessed
SLex moieties on the N-linked oligosaccharides. sCR1
potentially has 25 N-glycosylation sites (Klickstein et
al., 1988) and, although not every Asn-X-Ser(Thr) se-
quon is an efficient oligosaccharide acceptor (Kasturi et
al., 1997), it is expected that sCR1-SLex would be exten-

sively decorated with SLex moieties. Thus, in addition to
blocking complement activation, the potential multiva-
lent interactions between sCR1-SLex and its selectin
counterligands might render this molecule particularly
effective at inhibiting neutrophil activation and recruit-
ment to sites of inflammation on the endothelial surface.
It is important to determine the half-life of sCR1-SLex

and, especially, whether it localizes to sites of inflamma-
tion. Notably, the basic SCR structure of CR1 occurs in
selectins, and this might allow relatively easy structural
modifications and a “cassette” approach to the molecular
construction of hybrid molecules. For example, con-
structs possessing the ability to home to areas of in-
flamed endothelium might be readily combined with
elements effecting multivalent complement inhibition.
Spacing of the active segments along the construct could
be varied for optimal interaction with complement ele-
ments while still retaining the affinity of the selectins
for targeted endothelium.

D. Complement Receptor Type 2

The molecular cloning of the human CR2 (Moore et al.,
1987; Weis et al., 1988) facilitated its structural and
functional characterization (Ahearn and Fearon, 1989;
Fearon and Carter, 1995; Carroll and Fischer, 1997).
CR2 (CD21; Epstein-Barr virus receptor) is present on
follicular dendritic cells, mature B cells, and a subpopu-
lation of T cells, and it binds the C3 breakdown frag-
ments, C3dg and C3d. CR2 has relatively weak cofactor
activity for the factor I-mediated breakdown of iC3b to
C3dg and C3c (Mitomo et al., 1987), and it probably
plays a minor role in complement regulation. CR2 has B
cell-stimulating functions, as it associates with CD19, a
B cell surface molecule that activates B cells, and par-
ticipates in T cell-dependent B cell responses (Fearon
and Carter, 1995; Carroll and Fischer, 1997). Fearon
and colleagues provided direct evidence that attachment
of C3d to antigen significantly enhances humoral re-
sponses, a process that is mediated by CR2 (Dempsey et
al., 1996). The immune-augmenting function of C3d was
demonstrated by the fusion of murine C3d to hen egg
lysozyme (HEL). Thus, HEL bearing three copies of C3d
was ten thousand-fold more immunogenic than HEL
alone, suggesting that such manipulations might allow
for development of effective strategies for vaccination
without the need for adjuvant (Dempsey et al., 1996).

E. Soluble Decay Accelerating Factor

Decay accelerating factor (DAF) (CD55) is composed of
four SCRs plus a serine/threonine-enriched domain that
is capable of extensive O-linked glycosylation (fig. 2)
(Nicholson-Weller and Wang, 1994). DAF is attached to
cell membranes by a glycosyl phosphatidyl inositol (GPI)
anchor (Davitz et al., 1986; Medof et al., 1986) and,
through its ability to bind C4b and C3b, it acts by dis-
sociating the C3 and C5 convertases in both the classical
and alternative pathways (fig. 1). Unlike CR1, which
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possesses both extrinsic (Medof et al., 1982) and intrin-
sic activity (Kinoshita et al., 1986; Makrides et al.,
1992), DAF functions only intrinsically by inactivating
convertases assembled on the same cell membrane on
which it is expressed and not those convertases formed
on external membranes (Medof et al., 1984). Soluble
versions of DAF (sDAF) have been shown to inhibit
complement activation in vitro (Christiansen et al.,
1996; Moran et al., 1992) as well as in the reversed
passive Arthus reaction in guinea pigs (Moran et al.,
1992) (table 4).

The clinical usefulness of a complement blocker de-
pends on several requirements (Kalli et al., 1994). These
include the ability to inhibit the C5 convertases of both
classical and alternative pathways, a high affinity for
the C3b and C4b components of the convertases, the
irreversible inactivation of the convertases, and the abil-
ity to recycle in order to block multiple convertases
(Kalli et al., 1994). The modest inhibitory activity of
sDAF (Christiansen et al., 1996; Moran et al., 1992;
Kalli et al., 1994) and its lack of factor I cofactor activity
limit its therapeutic potential as a complement blocker.

F. Soluble Membrane Cofactor Protein

Membrane cofactor protein (CD46; measles virus re-
ceptor) (fig. 2) has factor I cofactor activity but no decay-
accelerating activity. It acts jointly with DAF, which has
decay-accelerating activity but no cofactor activity (table
3) to block C3b/C4b deposition on cell membranes (Lis-
zewski et al., 1991). MCP is an intrinsic regulator of
complement activation, i.e., it protects cells on which it
is expressed, but it does not protect neighboring cells
(Oglesby et al., 1992). It is expressed primarily as four
isoforms, termed BC1, BC2, C1, and C2, that are formed
by alternative splicing of a single gene and that differ in
the domains for O-glycosylation and cytoplasmic regions
(reviewed in Liszewski et al., 1996). The BC isoforms
have been shown to cleave cell-bound C4b more effi-
ciently than the C isoforms and to provide enhanced
cytoprotection against the classical pathway (Liszewski
and Atkinson, 1996). A recombinant sMCP was shown to
inhibit immune complex-mediated inflammation in the
reverse passive Arthus reaction model in rats (Chris-
tiansen et al., 1996). As in the case of sDAF, the single
activity of sMCP limits its potential as an effective ther-
apeutic reagent. However, sMCP may prove to be a
valuable reagent in combination with other complement
inhibitors (see Section III.I.).

G. Soluble CD59

CD59, also known by several other names (Liszewski
et al., 1996), is a single-chain glycoprotein that is GPI-
anchored to cell membranes (Holguin et al., 1989; Da-
vies et al., 1989; Davies and Lachmann, 1993). The
carbohydrate moiety at the single N-glycosylation site is
not required for complement inhibition (Suzuki et al.,
1996; Rushmere et al., 1997). CD59 functions as an

inhibitor of the formation of the MAC on cells by binding
to C8 and C9, thereby blocking the addition of polymer-
ized C9 molecules (Meri et al., 1990; Rollins et al., 1991).
sCD59 has been shown to possess complement inhibi-
tory activity in vitro (Sugita et al., 1994). However, the
potential usefulness of sCD59 as a therapeutic comple-
ment blocker is limited by its lack of certain functional
properties (as discussed in Section III.E.) (Kalli et al.,
1994). Although the inhibition of MAC assembly would
be of benefit in inflammation, the late stage in the com-
plement cascade at which CD59 acts (fig. 1), leaves the
generation of anaphylatoxins and their pathological se-
quelae unaffected.

H. Decay Accelerating Factor-CD59 Hybrid

The molecular fusion of different complement regula-
tory proteins has been used to create chimeric molecules
endowed with novel functions. Fodor and colleagues
(Fodor et al., 1995) constructed two such chimeric com-
plement inhibitors for cell surface expression using a
GPI anchor: CD (NH2-CD59-DAF-GPI) and DC (NH2-
DAF-CD59-GPI). The rationale behind this work was to
create a single protein that blocks C3 and C5 convertase
activity as well as the assembly of the MAC. Of the two
molecules, CD retained DAF function, but did not inhibit
C5b-9 assembly. The DC chimera, however, exhibited
both DAF and CD59 activity. The reason for the differ-
ential function of the two molecules was thought to be
the different orientation of the protein domains. Thus, in
the CD molecule, the CD59 moiety occupies a mem-
brane-distal position where it cannot interact with the
C5b-8 and C5b-9 complex, although in the DC molecule
the membrane-proximal position of the CD59 domain
facilitates the interaction between CD59 and the MAC
(Fodor et al., 1995). The DC chimera may have utility in
the production of transgenic organs (see also Section
VII.) for the inhibition of hyperacute rejection in xeno-
transplantation (Kennedy et al., 1994; Fodor et al., 1994;
McCurry et al., 1995a,b; Miyagawa et al., 1995; Heckl-
Östreicher et al., 1996; Kroshus et al., 1996b; Diamond
et al., 1996; Byrne et al., 1997).

I. Membrane Cofactor Protein-Decay Accelerating
Factor Hybrid

The molecular fusion of membrane cofactor protein
(MCP) and decay acclerating factor (DAF) brings to-
gether the complementary activities of these two regu-
latory molecules to create a single protein that has both
factor I cofactor activity and decay-accelerating activity.
A membrane-bound chimeric MCP-DAF was expressed
in CHO cells, and its activity was compared with that of
transfectants expressing MCP or DAF or MCP plus DAF
(Iwata et al., 1994). The proteins differed in their ability
to block C3 deposition on sensitized CHO cells through
activation of the classical pathway, in the order of MCP
1 DAF . DAF . MCP-DAF . MCP. C3 deposition via
the alternative pathway was blocked in the order MCP-
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DAF . MCP 1 DAF . DAF . MCP (Iwata et al., 1994).
Thus, in this in vitro system, the hybrid surface-bound
protein appeared to have greater potency at blocking
alternative rather than classical pathway activation.
Similar studies were performed in vitro in stably trans-
fected swine endothelial cells exposed to human comple-
ment (Miyagawa et al., 1994). In this model of xenograft
hyperacute rejection, mediated mainly by the classical
pathway, the surface-expressed MCP-DAF hybrid inhib-
ited cell lysis more effectively than MCP alone, and
apparently as effectively as DAF. Differences in lysis,
however, were rather small, and the quantitative differ-
ences in the levels of surface expression of the molecules
make it difficult to draw firm conclusions regarding
their relative effectiveness (Iwata et al., 1994; Miyagawa
et al., 1994). Nevertheless, these studies demonstrate
the dual functionality and complement inhibitory activ-
ity of the MCP-DAF hybrid.

A soluble version of chimeric MCP-DAF, referred to as
complement activation blocker-2 (CAB-2), possessed fac-
tor I cofactor activity and decay-accelerating activity,
and inactivated both classical and alternative C3 and C5
convertases in vitro as measured by assays of inhibition
of cytotoxicity and anaphylatoxin generation (Higgins et
al., 1997). CAB-2 had inhibitory activity against cell-
bound convertases that was greater than that of either
sMCP or sDAF or both factors combined. This hybrid
was shown to inhibit complement activation in vivo, in
the reversed passive Arthus reaction and in the direct
passive Arthus reaction, as well as in the Forssman
shock model in guinea pigs. The t1/2b of CAB-2 in rats
was 8 h (Higgins et al., 1997), which is suitable for
human therapy. It is possible that the half-life of CAB-2
may be longer in humans than in rats, as has been the
case for sCR1 (see Section III.A.). One potential limita-
tion of CAB-2 as a therapeutic is its potential immuno-
genicity. The molecular fusion of two otherwise natural
proteins is likely to create novel epitopes, which might
trigger an immune response. In this case, CAB-2 might
be useful in acute indications, depending on the severity
of the anti-CAB-2 response.

J. C1 Inhibitor

C1 inhibitor, a member of the “serpin” family of serine
protease inhibitors, is a heavily glycosylated plasma pro-
tein that prevents fluid-phase C1 activation (reviewed in
Davis, 1988; Davis et al., 1993). C1 inhibitor regulates
the classical pathway of complement activation (fig. 1)
by blocking the active site of C1r and C1s and dissoci-
ating them from C1q (Ziccardi and Cooper, 1979). Stud-
ies of the role of complement activation in myocardial
ischemia and reperfusion injury (reviewed in Homeister
and Lucchesi, 1994; Makrides and Ryan, 1997) have
used C1 inhibitor in feline (Buerke et al., 1995), rat
(Murohara et al., 1995a), and pig (Horstick et al., 1997)
models. All these studies have demonstrated that block-
ing the classical pathway of complement activation by

C1 inhibitor is an effective means of protecting ischemic
myocardial tissue from reperfusion injury.

K. C1q Receptor

Several types of human C1q receptors (C1qR) have
been described. These include the ubiquitously distrib-
uted 60- to 67-kDa receptor, referred to as cC1qR be-
cause it binds the collagen-like domain of C1q (Peerschke
et al., 1993; Malhotra et al., 1993). This C1qR variant
was shown to be calreticulin (Malhotra et al., 1993;
Stuart et al., 1996); a 126-kDa receptor that modulates
monocyte phagocytosis, designated C1qRp (Guan et al.,
1991, 1994; Nepomuceno et al., 1997); and a 28- to 33-
kDa protein isolated and cloned from Raji cells, termed
gC1qR because it interacts preferentially with the
globular domains of C1q (Ghebrehiwet et al., 1994;
Peerschke et al., 1996). A recent study showed that CR1
also acts as a receptor for C1q (Klickstein et al., 1997).
Experimental evidence supports the hypothesis that
gC1qR is not a membrane-bound molecule, but rather a
secreted soluble protein with affinity for the globular
regions of C1q (van den Berg et al., 1997). Thus, it may
act as a fluid-phase regulator of complement activation.
van den Berg et al. (1997) did not detect surface expres-
sion of gC1qR but were able to demonstrate strong in-
tracellular staining for this protein, as well as its pres-
ence in human and rat sera and in supernatants of
cultured HUVEC. Furthermore, other data are consis-
tent with the molecular properties of gC1qR. Thus, the
cDNA sequence (Ghebrehiwet et al., 1994) encodes a
protein that lacks a membrane-spanning domain (Fas-
man and Gilbert, 1990) or a consensus sequence for
GPI-anchoring (Medof et al., 1996). It is possible, how-
ever, that under certain conditions gC1qR may be sur-
face-expressed at low levels, or it may bind to cell mem-
branes as a complex with other fluid-phase molecules
(van den Berg et al., 1997). The ability of C1qR (66 kDa)
to inhibit the classical pathway of complement has been
demonstrated in vitro. Membrane-associated C1qR as
well as detergent-solubilized C1qR, purified from poly-
morphonuclear leukocytes and endothelial cells, blocked
complement-mediated lysis of C1q-sensitized erythro-
cytes (van den Berg et al., 1995).

The mechanisms by which the different types of C1qR
regulate complement activation in vivo and the physio-
logical significance of the putative fluid-phase C1qR
(van den Berg et al., 1995, 1997) remain unclear. How-
ever, the studies cited here, and the demonstration that
C1q is required for immune complexes to stimulate en-
dothelial cells to express adhesion molecules (Lozada et
al., 1995), suggest a potential therapeutic use in pre-
venting vascular injury.

IV. Complement-Inhibitory Antibodies

A. Anti-C5 Monoclonal Antibody

Inhibition of C5 activation using high-affinity (Kd ,
100 pM) anti-C5 monoclonal antibodies (mAbs) repre-
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sents another therapeutic approach for blocking comple-
ment activation (Matis and Rollins, 1995; Rinder et al.,
1995). This strategy is aimed at inhibiting the formation
of C5a and C5b-9 via both the classical and alternative
pathways (fig. 1), without affecting the generation of
C3b, a C3 opsonic product that is critical for antibacte-
rial defenses (Ross and Densen, 1984). This is scientifi-
cally sound, although, as discussed above (section
III.A.), the on-going clinical trials using sCR1 have pro-
duced no evidence to date that blockade of the C3 and C5
convertases in both the classical and alternative path-
ways compromises bacterial defenses. Another sug-
gested advantage (Wang et al., 1995) of using monoclo-
nal antibodies to block C5 activation is the prevention of
the direct cleavage and activation of C5 by oxygen rad-
icals (Vogt et al., 1989) or by enzymes released from
injured tissue (Wetsel and Kolb, 1982, 1983) during in-
flammation.

The efficacy of a mAb specific for murine C5 was
demonstrated in the treatment of collagen-induced ar-
thritis, an animal model for human rheumatoid arthri-
tis. It was shown that the systemic administration of the
anti-C5 mAb in mice blocked complement activation,
prevented the onset of arthritis in immunized animals,
and ameliorated established disease (Wang et al., 1995).
The same anti-C5 mAb was tested in mice that develop
an autoimmune disorder similar to human systemic lu-
pus erythematosus. Continuous treatment with the an-
tibody resulted in significant reduction in glomerulone-
phritis and in increased survival (Wang et al., 1996).

The anti-human C5 mAb N19/8 (Würzner et al., 1991)
that does not inhibit formation of C3a was tested in an in
vitro model of extracorporeal blood flow that activates
complement, platelets, and neutrophils (Rinder et al.,
1995). This mAb inhibited the generation of C5a and
soluble C5b-9 and blocked serum complement hemolytic
activity, without affecting the production of C3a. In ad-
dition, the anti-C5 mAb inhibited neutrophil CD11b up-
regulation, abolished the increase in P selectin-positive
platelets, and reduced formation of leukocyte-platelet
aggregates (Rinder et al., 1995). Thus, it appears that
C5a and C5b-9, but not C3a contribute to platelet and
neutrophil activation during extracorporeal procedures.
Although the N19/8 mAb could be used in human ther-
apy, it is recognized that chronic application of monoclo-
nal antibodies would elicit human anti-mouse antibody
responses (Waldmann, 1991; Khazaeli et al., 1994). The
“humanization” of antibodies (Co and Queen, 1991; Rap-
ley, 1995; Morrison and Shin, 1995) should minimize
immunogenic reactions, although it might be difficult to
completely eliminate anti-idiotypic effects. Recent ad-
vances in transgenic animal technology now make it
possible to produce completely human monoclonal anti-
bodies that are devoid of mouse or other nonhuman
sequences (Fishwild et al., 1996; Brüggemann and Neu-
berger, 1996; Brüggemann and Taussig, 1997; Jakobo-
vitz, 1995; Sherman-Gold, 1997).

B. Anti-C5 Single Chain Fv

A recombinant single chain (scFv) antibody, con-
structed from the variable region of the N19/8 mAb, was
shown to inhibit human C5b-9-mediated hemolysis of
chicken erythrocytes and to partially inhibit C5a gener-
ation (Evans et al., 1995). The ability of this scFv to
protect against complement-mediated myocardial injury
was demonstrated in isolated mouse hearts perfused
with 6% human plasma. Pharmacokinetic analysis in
rhesus monkeys revealed a t1/2a of 28 minutes and a
t1/2b of 17 h (Evans et al., 1995). Humanized anti-C5
antibody and scFv have been produced (Thomas et al.,
1996).

V. Synthetic Inhibitors of Complement
Activation

Compared with conventional drugs, recombinant pro-
teins for therapy remain attractive to date, for reasons
having to do with both the biological properties of pro-
teins and the economics of drug development (Buckel,
1996). The time required to develop protein drugs is
shorter than that for conventional drugs and, although a
therapeutic protein has a 40% probability of becoming a
marketable drug, this figure is approximately 10% for a
new chemical entity, partly because of the lower toxicity
of proteins compared with chemical compounds (Buckel,
1996). However, the high cost of therapeutic proteins is
increasingly becoming a problem (Grindley and Ogden,
1995). The emergence of structure-based drug design for
the development of small synthetic molecules for ther-
apy holds promise, in spite of formidable technical chal-
lenges (Verlinde and Hol, 1994; Hruby, 1997).

The existing plethora of synthetic blockers of comple-
ment prompted Becker in 1972 to note that “a compre-
hensive review of all compounds found to inhibit com-
plement would turn into a catalogue of a chemical
supply house.” Twenty five years later, this task be-
comes even more daunting. Several excellent reviews on
the use of synthetic complement inhibitors (table 5) for
therapeutic, as well as for other uses, have been pub-
lished (Becker, 1972; Patrick and Johnson, 1980; As-
ghar, 1984; Fujii and Aoyama, 1984; Hagmann and
Sindelar, 1992). The objective here is to present a brief
and selective summary of the findings using synthetic
molecules for the therapeutic inhibition of complement.

A. Peptides and Analogs

The anaphylatoxins exert their multiple biological
functions (Gerard and Gerard, 1994; Mulligan et al.,
1997; Hartmann et al., 1997) by binding to their respec-
tive receptors (Wetsel, 1995). C5a, the most potent ana-
phylatoxin, is a 74-amino acid polypeptide, the sequence
of which (Fernandez and Hugli, 1978) has been used to
synthesize peptide analogs to downregulate the trans-
ducing functions of the C5aR, a member of the G protein-
coupled receptor superfamily (Gerard and Gerard, 1991;
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Boulay et al., 1991). A series of hexapeptide analogs of
the form NMePhe-Lys-Pro-dCha-X-dArg has been syn-
thesized (Mollison et al., 1992; Konteatis et al., 1994)
and tested for C5aR antagonism. The peptide C089 (IC50
70 nM) containing Trp at position X lacked agonist prop-
erties and inhibited C5a-induced degranulation and
GTPase activity, a measure of G protein activation (Kon-
teatis et al., 1994). The in vivo functionality of this
peptide has not been reported. Other C5a peptide deriv-
atives having no anaphylatoxin or agonist activity have
been described (van Oostrum et al., 1996) and shown to
be active in reducing inflammation in animal models.
The elucidation of the tertiary structure of a peptide
antagonist of C5aR (Zhang et al., 1997) should provide
information for the future structure-based design of
C5aR antagonists.

A different experimental approach to the design of
peptide antagonists of C5aR is based on the molecular
recognition theory proposed by Blalock (reviewed in Bla-
lock, 1990; Trospha et al., 1992; Blalock, 1995). This
theory is based on the concept of “complementary” or
“antisense” peptide and proposes that peptides encoded
in the same reading frame on opposite strands of de-
oxyribonucleic acid (DNA) can bind to each other on the
basis of their complementary hydropathy (Blalock,
1995). Furthermore, the theory suggests that receptors
and their cognate ligands may have evolved from com-
plementary regions of the same nucleotide sequence (see
discussion in Baranyi et al., 1996). Amphiphilic peptides
consisting of 8–15 residues and their corresponding an-
tisense peptides have been identified within proteins
and termed antisense homology boxes (AHB) (Baranyi et
al., 1995). These regions may represent important struc-
tural elements that somehow influence the function of
their respective proteins. A peptide derived from an
AHB of the human endothelin A receptor inhibited en-
dothelin in a smooth muscle relaxation assay and
blocked endotoxin-induced shock in rats (Baranyi et al.,
1995). Similarly, computer analysis of human C5a and
the C5aR revealed several AHBs, and peptides derived
from the AHBs acted as agonists or antagonists of C5aR
function, depending on their concentration (Baranyi et
al., 1996). It is possible that the ability to locate AHBs in
proteins may provide an efficient means to identify pep-
tides with biological activity. Other peptides that inhibit
specific components of the complement system are sum-
marized in table 5.

B. Organic Molecules

The crystal structure of factor D has been elucidated
in a series of studies designed to produce an inhibitor for
the therapeutic modulation of the alternative pathway
(Narayana et al., 1994; Kim et al., 1995; Cole et al.,
1997). This strategy is based on the rationale that factor
D is the limiting enzyme in the alternative pathway and
is positioned early in the biochemical cascade. The abil-
ity of diisopropyl fluorophosphate to completely inacti-

vate factor D (Fearon et al., 1974) has been exploited in
crystallographic studies to compare the active sites be-
tween factor D and the diisopropyl fluorophosphate-in-
hibited factor D (Cole et al., 1997) with the objective of
designing small molecule inhibitors. This work resulted
in the synthesis of a factor D inhibitor (BCX-1470, IC50
96 nM, see table 5).

The fungal metabolite K76 (see table 6) has been
modified to yield complement inhibitors of modest IC50
values (Kaufman et al., 1995a,b). TKIXc, a K76 deriva-
tive, inhibited both the classical and the alternative
pathways (see table 5). Other synthetic inhibitors of
complement activation are listed in table 5.

VI. Naturally Occurring Compounds That Block
Complement Activation

There is voluminous literature on naturally-occurring
complement inhibitors isolated from animal and plant
tissues (table 6). Some of these compounds may serve as
leads to new chemical structures, although others have
not yet been purified to homogeneity. Heparin and its
related glycosaminoglycan compounds and derivatives
have been actively pursued as complement inhibitors.
Heparin is a sulfated copolymer of uronic acid and glu-
cosamine (Jaques, 1979a,b). Its protein core is removed
during commercial processing to yield glycosaminogly-
can heparin. The anticomplement activity of heparin
was first demonstrated in 1929 (Ecker and Gross, 1929),
and its mechanism of action has been extensively stud-
ied (Weiler et al., 1978, 1992; Linhardt et al., 1988;
Maillet et al., 1983). Heparin blocks the interaction be-
tween C1q and complement activators and inhibits the
assembly of C3 convertases in the classical and alterna-
tive pathways. In addition, it may potentiate C1 inhib-
itor-mediated inactivation of C1s, a mechanism shared
by heparin and related glycosaminoglycans (Wuillemin
et al., 1997; Kirschfink et al., 1997). A highly sulfated,
low-molecular weight heparin derivative has been
shown to prevent complement-mediated myocardial in-
jury in the perfused rabbit heart (Gralinski et al., 1997).
Heparin-coated extracorporeal circuits inhibit comple-
ment activation during cardiac surgery (te Velthuis et
al., 1996). For more information on naturally-occurring
complement-inhibitory compounds, refer to the refer-
ences in table 6.

VII. Complement Inhibition in
Xenotransplantation

Xenotransplantation, the ability to engraft organs
across the species barrier, would theoretically meet the
demand for organ transplantation that has doubled
since 1988 and is growing by 15% per annum, requiring
approximately 150,000 people worldwide to wait for do-
nor organs (Nainggolan, 1996). It is estimated that by
the year 2010 the xenotransplantation market could be
worth $6 billion (Nainggolan, 1996). In recent years
there has been remarkable progress in prolonging sur-
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vival of xenogeneic organs in animal models of xeno-
transplantation, and there is optimism in the scientific
community about overcoming the various immunologi-
cal barriers to xenotransplantation (Auchincloss, 1997).
However, there are serious obstacles to be overcome,
and, occasionally, we are reminded of the severe hurdles
evolution has set for xenotransplantation (Hammer,
1997). In an excellent review of comparative physiology,
biochemistry, and anatomy in the context of xenotrans-
plantation, Hammer (1997) concludes that “In the pig-
to-primate model, little convincing organ function has
been achieved. . . . Today’s approaches are not convinc-
ing.” The field of xenotransplantation has been reviewed
often and in great detail. The recent volume edited by
Cooper et al. (1997) provides an excellent single source
of information on this topic. The objective here is to
summarize briefly the main areas of research activity as
they pertain to complement inhibition in xenotransplan-
tation.

Organ transplantation between widely disparate spe-
cies is termed “discordant” as opposed to “concordant”
transplantation between closely related species (Calne,
1970). The hallmark of discordant xenotransplantation
is the rapid and destructive rejection of the xenograft, a
process referred to as hyperacute rejection (HAR) (table
7). Activation of the complement system, after recogni-
tion of the discordant organ by xenoreactive antibodies,
plays a crucial role in HAR (Baldwin et al., 1995; San-
filippo, 1996; Dalmasso, 1997). It is generally accepted
that the relative importance of the classical versus the
alternative pathway in HAR depends on the species
combination studied. For example, the complete elimi-
nation of natural antibodies from rats had little effect on
their ability to reject guinea pig hearts hyperacutely
(Pruitt et al., 1993; Soares et al., 1994). On the other
hand, blocking or absorption of natural antibodies in
primates is an effective method of preventing HAR of
porcine hearts. Several other studies using different spe-
cies combinations have shown that the alternative path-

way of complement is activated in HAR (Miyagawa et
al., 1988; Wang et al., 1992; Forty et al., 1992; Hengster
et al., 1996). A recent study examined whether the al-
ternative and classical pathways can be activated inde-
pendently in HAR: human plasma was depleted of both
C1q and factor D and then reconstituted with purified
C1q or factor D to restore the classical and alternative
pathways, respectively (Romanella et al., 1997). The
modified plasmas were tested in an ex vivo isolated
mouse heart perfusion model, and it was demonstrated
that, in the mouse-to-human species combination, both
the classical and alternative pathways are indepen-
dently activated (Romanella et al., 1997).

Two main approaches have been used to prevent HAR
(table 8). One method attempts to block the interactions
between native xenoreactive antibodies and the xe-
nograft endothelium. This strategy is aimed at the major
xenoantigen responsible for HAR, the a-galactosyl
epitope (Rother and Squinto, 1996; Oriol and Cooper,
1997). The other approach aims to block complement
activation using soluble complement inhibitors or trans-
genic technology. Cobra venom factor (CVF) has been
shown to deplete complement and prolong graft survival
(Leventhal et al., 1994). However, CVF achieves its ef-
fect by activating complement and generating the ana-
phylatoxins C3a and C5a, which may cause endothelial
damage (Till et al., 1982; Schmid et al., 1997b). In addi-
tion, the immunogenicity of CVF limits its usefulness.
C1 inhibitor (C1-Inh), in combination with heparin,
blocks HAR mediated by the classical pathway (Dal-
masso and Platt, 1993). sCR1 has been shown to effec-
tively delay HAR in a variety of xenotransplantation
models (reviewed in Baldwin et al., 1995; Sanfilippo,
1996; Ryan, 1995; Levin et al., 1996; Marsh and Ryan,
1997).

An alternative strategy for the suppression of HAR
uses transgenic technology for the production of animals
expressing molecules of the human RCA family (Cozzi

TABLE 7
Temporal stages of discordant xenograft rejection

Hyperacute rejection Acute/delayed rejection Chronic rejection

Deposition of recipient XNA on xenograft endothelium Factors involved in hyperacute rejection Cell-mediated
Complement activation: C3a/C5a Activated endothelium Mechanisms unclear
Upregulation of adhesion molecules Disordered thromboregulation
Leukocyte recruitment Upregulation of TF on activated ECs and monocytes
Activation of ECs (prothrombotic surface):

Breakdown of EC barrier to plasma proteins and blood cells
Secretion of cytokines by activated NK cells and

monocytes:
Loss of TM, AT-III: 1 thrombin IFN-g, IL-1b, IL-6, IL-7, IL-8, IL-12, TNF-a, MCP-1
Loss of TFPI Cytokine-mediated recruitment of leukocytes to the
Loss of ADPase: 1 ADP, platelet aggregation and thrombi graft
Loss of heparan sulfate which tethers SOD Inflammation and thrombosis

Platelet adherence and activation Organ rejection within days
Release of inflammatory mediators:

histamine, PAF, thrombin, leukotrienes
Fibrin deposition, thrombosis
Organ rejection within minutes to hours

Abbreviations: AT-III, anti-thrombin III; EC, endothelial cell; IFN, interferon; IL, interleukin; MCP, monocyte chemoattractant protein; NK, natural killer; PAF,
platelet-activating factor; SOD, superoxide dismutase; TF, tissue factor; TFPI, tissue factor pathway inhibitor; TM, thrombomodulin; TNF, tumor necrosis factor; XNA,
xenoreactive antibodies. After Auchincloss, 1997; Bach, et al., 1995, 1996; Parker et al., 1996; Platt, 1996; Saadi et al., 1996; Takahashi et al., 1997
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and White, 1995; Platt and Logan, 1997; Squinto and
Fodor, 1997; Hancock, 1997). This is a promising area
with its own limitations (table 8). Disturbingly, the re-

cent demonstration that pig cell lines harbor endoge-
nous retroviruses that could infect human cells in vitro
(Patience et al., 1997) raises the possibility that pig

TABLE 8
Methods of inhibiting hyperacute rejection in xenotransplantation

Method Rationale/comments References

Inhibition of interactions between XNA and
xenograft endothelium

Immunoadsorption through columns
containing Gala(1–3)Gal linkages

Depletion of XNA; temporary suppression of
XNA titers

Good et al., 1992; Pascher et al., 1997; Liu et
al., 1997

Intravenous infusion of a-galactosyl
carbohydrates.

Saturation of XNA sites prior to
transplantation; temporary suppression
of XNA titers

Ye et al., 1994

Expression of a(1,2)-FT (EC 2.4.1.69) in
transgenic pig cells.

Reduced surface expression of
Ga1a(1–3)Ga1; reduced binding of human
anti-pig XNA

Sandrin et al., 1995; Koike et al., 1996, 1997;
Sharma et al., 1996

Adenovirus-mediated gene transfer of
antisense ribozyme to a(1–3)-FT (EC
2.4.1.51).

Ribozyme in xenogeneic organ inhibits
expression of Ga1a(1–3)Ga1 epitope

Hayashi et al., 1997

Expression of GnT-III in transgenic
animals.

Suppression of Ga1a(1–3)Ga1 transferase Tanemura et al., 1997a,b

Neutralization of anti-aGa1 antibodies with
monoclonal anti-idiotypic antibodies

Neutralization of the cytotoxic activity of
human anti-aGa1 antibodies

Koren et al., 1997

Deletion of a1,3-Galactosyltransferase gene
in xenograft (gene knockout)

Currently not feasible because pig
embryonic stem cell technology has not
yet been developed; possibility of
horizontal transmission of retroviruses?

Sandrin et al., 1997; Rother et al., 1995; Rother
and Squinto, 1996

Down-regulation of integrin GpIIIa The porcine integrin GpIIIa expresses XNA-
reactive carbohydrate epitopes; down-
regulation of GpIIIa alone does not
significantly alter xenograft rejection

Kearns-Jonker et al., 1997

Infusion of galactosyl peptide mimetics Peptides that mimic the a(1–3)Ga1
determinant for blocking or absorbing
XNA.

Vaughan et al., 1996; Kooyman et al., 1996

Infusion of synthetic sulfated
oligosaccharides

Inhibition of endothelial activation by
blocking release of heparan sulfate

Deng et al., 1996

Depletion of xenoreactive IgM natural
antibody

Suppression of HAR Kroshus et al., 1996a

Direct inhibition of complement activation
Systemic anti-complement agents: sCR1, C1

inhibitor, cobra venom factor, FUT-175,
K76 (see section III; tables 4–6).

Inhibition of both classical and alternative
pathways, or selective inhibition of
classical pathway. FUT-175, K76 are
relatively ineffective at suppressing HAR;
dual-pathway inhibitors in long-term
therapy carry the theoretical risk of
bacterial infections

Levin et al., 1996; Baldwin et al., 1995; Marsh
and Ryan, 1997; Candinas et al., 1996;
Dalmasso, 1997; Pruitt et al., 1997;
Leventhal et al., 1993, 1994; Dalmasso and
Platt, 1993, 1994; Miyagawa et al., 1993;
Tanaka et al., 1996

Infusion of large doses of IgG IgG around target cells competes for
binding of C3b and C4b

Basta et al., 1991; Latremouille et al., 1994;
Magee et al., 1995; Gautreau et al., 1995

Antibodies directed against complement
components

Anti-C5 and anti-C8 antibodies Rollins et al., 1995; Kroshus et al., 1995;
Thomas et al., 1996

Xenogeneic organs expressing membrane-
bound human RCA proteins.

Expression of human RCA proteins in
xenogeneic vascular endothelial cells
would efficiently inhibit activation of
human complement, as RCA proteins are
species-specific; localization of recipient
RCA proteins in graft would not impair
systemic complement activation;
transgenic animals expressing human
RCA proteins which serve as microbial
receptors may be susceptible to human
pathogens, and may require appropriate
vaccination

Dalmasso et al., 1991; Cozzi and White, 1995;
Dalmasso, 1997; Platt and Logan, 1997;
Squinto and Fodor, 1997; Hancock, 1997

Requires additional immunosuppression,
e.g., cyclosporin A, steroids, and
cyclophosphamide

Navia, 1996; Morris, 1996; Brazelton and
Morris, 1996

Possibility of xenosis or xenozoonosis Chapman and Fishman, 1997; Allan, 1997;
Murphy, 1996; Stoye, 1997; Stoye and Coffin,
1995; Chapman et al., 1995; Patience et al.,
1997; Bach et al., 1998; Kennedy and Sewell,
1998

Complex biochemical differences between
recipient and xenogeneic organs: need to
“outwit evolution”, a daunting task

Hammer, 1997

Abbreviations: FT, fucosyltransferase; GnT-III, b-D-mannoside b-1,4-N-acetylglucosaminyl transferase III; RCA, regulators of complement activation; XNA, xenoreactive
antibodies.
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retroviruses might infect human cells in xenotransplan-
tation (Chapman and Fishman, 1997; Allan, 1997; Mur-
phy, 1996; Stoye, 1997; Stoye and Coffin, 1995; Chap-
man et al., 1995; Patience et al., 1997; Bach et al., 1998).

Clearly, there has been significant progress in our
understanding of the mechanisms of HAR, and it is
reasonable to anticipate that this principal immunolog-
ical barrier to xenotransplantation, as well as delayed
rejection, will be overcome in the near future (Auchin-
closs, 1997). However, formidable obstacles to overcome
chronic rejection of xenografts remain (Hammer, 1997).
Evidence indicates that chronic rejection may be medi-
ated by several complement-independent mechanisms,
including the activation of endothelium by IgM xenore-
active antibodies (Platt et al., 1991; Blakely et al., 1994),
activation of macrophages or T cells (Blakely et al., 1994;
Chen et al., 1992; Fryer et al., 1994, 1995), activation of
natural killer cells (Inverardi et al., 1992; Arakawa et
al., 1994), and antibody-dependent cellular cytotoxicity
(Schaapherder et al., 1994; Dennert, 1974; Lin et al.,
1997).

VIII. Bispecific Antibodies for Immune Complex
Removal

The potential role of erythrocytes in the body’s defense
against bacteria and viruses was recognized by Nelson
(1953, 1955) who demonstrated in vitro the binding of
microorganisms to the erythrocyte surface in the pres-
ence of antibody and complement and showed that the
immobilization of C3b-opsonized microbes on erythro-
cytes led to increased phagocytosis of the adherent
pathogens by leukocytes. Erythrocyte-associated CR1
(Fearon, 1979) in primates plays a key role in the elim-
ination of antibody/antigen immune complexes (IC) by
binding C3b/C4b-opsonized IC in the circulation. The IC
are then removed from erythrocytes by macrophages for
subsequent clearance in the liver and spleen (Schifferli
et al., 1986; Ahearn and Fearon, 1989). The erythrocytes
are returned to the circulation without lysis. Nelson’s
original observations indicated that the erythrocyte-
CR1 system could possibly be manipulated for the re-
moval of pathogens in human disease. Thus, Taylor and
colleagues (Taylor et al., 1991) speculated that if tar-
geted antigens could be bound to erythrocytes via CR1 in
the absence of complement, then it might be possible to
use erythrocytes to treat a variety of infectious diseases
associated with blood-born pathogens. This concept was
systematically studied using bispecific, cross-linked
monoclonal antibodies (heteropolymers) with specificity
for both targeted antigen and the human CR1 (Taylor et
al., 1991) (fig. 3A).

The potential value of bispecific antibodies in this
therapeutic approach rests on their ability to facilitate
antigen clearance in vivo without destruction of eryth-
rocytes. In studies designed to answer this question, the
injection into monkeys of sensitized erythrocytes (con-
taining 125I-labeled Ag attached to 51Cr-labeled monkey

erythrocytes) led to rapid clearance from the circulation
of several different antigens with no sequestration, lysis,
or clearance of erythrocytes (Taylor et al., 1992; Reist et
al., 1993). Thus, large amounts of IgG can be bound via
CR1 to human or monkey erythrocytes without any
phagocytic uptake by mononuclear cells. In contrast,
erythrocytes that bind comparable levels of IgG at sites
other than CR1, are rapidly phagocytosed (Reinagel et
al., 1997). The primary organs for uptake of the IC were
the liver and spleen (Reist et al., 1994). Similar studies
in experimental monkey models demonstrated the fea-
sibility of using bispecific antibodies to clear prototype
viruses (Taylor et al., 1997a,b) and autoantibodies (Fer-
guson et al., 1995a,b; Taylor and Ferguson, 1995) from
the circulation (fig. 3B), and, once again, the cleared
substrates were phagocytosed and destroyed in the liver
(Taylor et al., 1997a). In vitro studies using bispecific
antibodies suggest that a modification of this approach
may be used to clear bacterial pathogens from cystic
fibrosis patients (McCormick et al., 1997). Mouse mono-
clonal antibodies are inherently immunogenic in hu-
mans, but this problem could be minimized through
antibody engineering, “humanization” methods, or
transgenic technology for production of completely hu-
man antibodies.

In contrast to the above approach that avoids comple-
ment activation, bispecific antibodies have also been
engineered to recruit complement effector functions
(Kontermann et al., 1997; Holliger et al., 1997). In this
case, human antibody fragments directed against hu-
man C1q were isolated from a phage display library and
coupled to lysozyme-specific antibody fragments, creat-
ing bispecific antibodies (diabodies). These were able to
recruit C1q, effecting the lysis of lysozyme-coated sheep
erythrocytes (Kontermann et al., 1997). Other diabody
constructions were directed against the target antigen
as well as against serum Ig and were shown to recruit

FIG. 3. Schematic representation of the concept of bispecific monoclo-
nal antibody therapy for the clearance of pathogens from the circulation.
A, bispecific antibody targeted to a soluble circulating antigen. B, bispe-
cific antibody targeted to autoantibody, in this case anti-DNA autoanti-
body. After Taylor and Ferguson (1995), with permission from the author
and publisher.
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complement and promote cytotoxicity toward colon car-
cinoma cells in conjunction with CD81 T cells (Holliger
et al., 1997). Such bispecific antibodies may have ther-
apeutic utility in situations requiring complement acti-
vation.

IX. Summary

The use of powerful methodologies in molecular biol-
ogy, biochemistry, and physiology in the last 2 decades
has led to impressive progress in our understanding of
the mechanisms of complement activation and its role as
either a protective or a pathogenic factor in human dis-
ease. With respect to disease pathogenesis, the complex-
ity of the complement cascade provides opportunities for
several different therapeutic targets within the comple-
ment pathways. More than a century after complement
was first described, we are about to witness in the near
future the availability of a variety of complement inhib-
itors for specific therapies. Progress in the area of xeno-
transplantation has been substantial, but formidable
obstacles remain to selective inhibition of the factors
that block successful clinical xenotransplantation.
Bispecific antibodies, designed to enhance rather than
inhibit existing complement pathways, hold strong
promise for the clearance of viral and bacterial patho-
gens from the circulation.
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